If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+576=676
We move all terms to the left:
a2+576-(676)=0
We add all the numbers together, and all the variables
a^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $
| -2+x/3+7=13 | | s=(16-2)180 | | x+120+97+130+150=497 | | 14x=14x+7.5 | | 2(4c+1)c=12 | | X-35=3x+1 | | 3t–7=–13 | | 4x+7-x=11x-65 | | x+34+x=16 | | B(t)=15001.045^t | | -9+10m=-209 | | y=200(1=0.05)¹0 | | -2(1.5x-3+x=2 | | -t+6=8 | | X-1=6x+6 | | -8a=23=-5(a+4) | | 9.2=k-3.4 | | 7-5(4p+6)=-23-3p | | 4(b–8)=–44 | | -4(a-2)=8-4a | | |6-2/3x|=12 | | 1.02^x=21000 | | -4=4(3-x) | | (w-4)^3=48 | | 4k-7=-7+4k | | (w-4)^3-48=0 | | F(N)=12(3)n | | -7v+1=-83 | | i+3=-10 | | x–18=43 | | i+3=10 | | 5(2+m)=20 |