If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+432-42a=0
We add all the numbers together, and all the variables
a^2-42a+432=0
a = 1; b = -42; c = +432;
Δ = b2-4ac
Δ = -422-4·1·432
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6}{2*1}=\frac{36}{2} =18 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6}{2*1}=\frac{48}{2} =24 $
| p/2+5=41 | | 5x–2+x=9+3x+10 | | 38+7x=4x-1 | | 3(u+3)-7u=-15 | | 3(6-f)-4=3f-43(6-f)-4=3f-4 | | 27-4x=x-8 | | –12x = –48 | | 13b-7b-4+b=10 | | 13b-7b-4+b=1 | | 9x+9=105 | | 2(2u+9)=55 | | 6x=8x-21 | | 10=x/2+2 | | 72=7x+45 | | 7x+17=6x-8 | | 10x+26=104 | | k/2−30=-21 | | 342r-5632r=8.323 | | 2(4x+6)=10x+3-2x+9 | | 3x+91=106 | | q/4+9=10 | | 7(x+4)=3(4x+18) | | 42=-3x+6 | | (2)/(3)d-9=-1 | | 1/2z=914 | | y/2+9=29 | | 30x+90+60=180 | | -6t+13=61 | | 9x+8-5-3=180 | | w+33/8=15/6w= | | 8+5/6x=-28 | | 5y-32=38 |