If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+2601=3600
We move all terms to the left:
a2+2601-(3600)=0
We add all the numbers together, and all the variables
a^2-999=0
a = 1; b = 0; c = -999;
Δ = b2-4ac
Δ = 02-4·1·(-999)
Δ = 3996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3996}=\sqrt{36*111}=\sqrt{36}*\sqrt{111}=6\sqrt{111}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{111}}{2*1}=\frac{0-6\sqrt{111}}{2} =-\frac{6\sqrt{111}}{2} =-3\sqrt{111} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{111}}{2*1}=\frac{0+6\sqrt{111}}{2} =\frac{6\sqrt{111}}{2} =3\sqrt{111} $
| 200=100b | | Y=55x-100 | | 4^y=8 | | 8x6=(x6)+(3x6) | | 3a+6=2a+19 | | 8x+42=122 | | 8y-2.4=23.2 | | f(4)=3(4)+25 | | 5+18.50x=116 | | Y=-x+12.3x+24=32 | | 3(10^x)=410 | | -2=1+p | | 9q-8q-q=14 | | (.18x+51)+(.07x+53)=180 | | -3x+10=-8-5x | | 8x+4-3x=24+x | | 5x=(6x-18) | | 5y=(y+72) | | 3x=(4x-22) | | 14x^2+15x-35=0 | | 4.2=7u-18.2 | | 5(y+8)=2(y+1) | | 3b*2b*5b=30b | | 72x+251=325 | | 6.5+f=17.11 | | 5x-42=107 | | 5x-5=44 | | 6x-80=100-4x | | 3y+44=104 | | 3y+44=76 | | 8x-32=512 | | 18=0.5t |