If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+14a+13=0
We add all the numbers together, and all the variables
a^2+14a+13=0
a = 1; b = 14; c = +13;
Δ = b2-4ac
Δ = 142-4·1·13
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-12}{2*1}=\frac{-26}{2} =-13 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+12}{2*1}=\frac{-2}{2} =-1 $
| 7^(2x)=8^(3x) | | 8(x-3)+7=2(4x-17) | | (150/x)=20 | | 1/3+2/3(3s+1)=1-s+2/2 | | 9x+3x=5x+31 | | 3w+2(8-w)=17 | | -2x-(-x/2-4)=5 | | 2-7x+6=114 | | -x-18=8x | | 5^x=440 | | 1x-30=2x-135 | | 9+2+2^x=999999 | | x=09 | | x+2=-0 | | 2x-12=100-6x | | 4x=14+3x | | x+1-1+1-90=90 | | X^2+2x+1/x+1=2x-1 | | x-0+1-0=0 | | x+2-8=999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 | | x+2-8=3 | | 4-5z=11-z | | -3n+3=57 | | -2/7x-3/28x+1/4x=-24 | | Y=23x-7 | | 5w-80=-2w-10 | | 8(5-2x)=72 | | 134=218-w | | 2x+6/1/5=19 | | 100-3x^2=0.001x^2 | | x=25^2 | | 100-0.2x=1+(x-1) |