a(a-2)=(a+4)-(a+2)

Simple and best practice solution for a(a-2)=(a+4)-(a+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a(a-2)=(a+4)-(a+2) equation:



a(a-2)=(a+4)-(a+2)
We move all terms to the left:
a(a-2)-((a+4)-(a+2))=0
We multiply parentheses
a^2-2a-((a+4)-(a+2))=0
We calculate terms in parentheses: -((a+4)-(a+2)), so:
(a+4)-(a+2)
We get rid of parentheses
a-a+4-2
We add all the numbers together, and all the variables
2
Back to the equation:
-(2)
a = 1; b = -2; c = -2;
Δ = b2-4ac
Δ = -22-4·1·(-2)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{3}}{2*1}=\frac{2-2\sqrt{3}}{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{3}}{2*1}=\frac{2+2\sqrt{3}}{2} $

See similar equations:

| 5x-18=5x+8 | | h-9=0 | | |3x+5|=2x | | 7+2u=13 | | 2h^2+4h=63 | | 3x+6=3x+3 | | 18-g=7 | | 7/4=4/t | | k/4+14=16 | | |3x=5|=2x | | y=4-3+19 | | 22+3y-5=12y-11-2y | | 4(b+3)-2b+4=110 | | -200.7=36x | | Y=6.72(2)t | | 6/4=6+x/5 | | Y1(x)=1+2.5x | | 3/(2w)=6/7 | | G(x)=-2/2x+5 | | (2x+8)+(x-24)=180 | | 32+7x=2(1-4x) | | 6c+25c+5c=180 | | 6x-7+5x-3=180 | | 6x+36=57 | | 48/72=x/120 | | 6x-23=25-2x | | 39+19m=100 | | Y=1500(1.074)t | | -3x-5(-3x-9)=-52 | | 5/3w=3/4 | | 4x(4x)–8x=0 | | 8x+25=6x+9 |

Equations solver categories