a(2b-3c)-2b(5c-3a)+3c(a-2b)=

Simple and best practice solution for a(2b-3c)-2b(5c-3a)+3c(a-2b)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a(2b-3c)-2b(5c-3a)+3c(a-2b)= equation:


Simplifying
a(2b + -3c) + -2b(5c + -3a) + 3c(a + -2b) = 0
(2b * a + -3c * a) + -2b(5c + -3a) + 3c(a + -2b) = 0
(2ab + -3ac) + -2b(5c + -3a) + 3c(a + -2b) = 0

Reorder the terms:
2ab + -3ac + -2b(-3a + 5c) + 3c(a + -2b) = 0
2ab + -3ac + (-3a * -2b + 5c * -2b) + 3c(a + -2b) = 0
2ab + -3ac + (6ab + -10bc) + 3c(a + -2b) = 0
2ab + -3ac + 6ab + -10bc + (a * 3c + -2b * 3c) = 0
2ab + -3ac + 6ab + -10bc + (3ac + -6bc) = 0

Reorder the terms:
2ab + 6ab + -3ac + 3ac + -10bc + -6bc = 0

Combine like terms: 2ab + 6ab = 8ab
8ab + -3ac + 3ac + -10bc + -6bc = 0

Combine like terms: -3ac + 3ac = 0
8ab + 0 + -10bc + -6bc = 0
8ab + -10bc + -6bc = 0

Combine like terms: -10bc + -6bc = -16bc
8ab + -16bc = 0

Solving
8ab + -16bc = 0

Solving for variable 'a'.

Move all terms containing a to the left, all other terms to the right.

Add '16bc' to each side of the equation.
8ab + -16bc + 16bc = 0 + 16bc

Combine like terms: -16bc + 16bc = 0
8ab + 0 = 0 + 16bc
8ab = 0 + 16bc
Remove the zero:
8ab = 16bc

Divide each side by '8b'.
a = 2c

Simplifying
a = 2c

See similar equations:

| 19-3x=6x+1 | | 0=28t^2-37t-225 | | 2+-k=0 | | d^3=(25/28) | | -2(7-4x)=19 | | t-9=28t^2-37t-225 | | -4x+17=9x-1 | | 15=y+12 | | (5u-4)(6u+5x-2)= | | a=1/2x | | 1.86=6.2x | | a=1/2s | | 5-9(-2-3(5x+1))= | | -12(x+4)=4(3x+1) | | 36+18c-10=8c+106 | | 3.6=.72(a+6) | | a=1/2S3 | | 2.3*4.1= | | 5.92+100= | | -5(n-1)-(2n+3)= | | 8x=6x+84 | | 1/6c-3=-2 | | 0.06+-.4+-1.5= | | 20=7x+5(-4x+17) | | -5(2a+8b-5)-3(-9b-5a+7)= | | -16x^2+63.5x+2=0 | | X/2.3=4.1 | | X/2.3=4. | | -45+9x=-189 | | -sin(x)-2cos(x)=0 | | X/4=45.5 | | Z/4=-12 |

Equations solver categories