a(2a-9)=5(3a-7)-1

Simple and best practice solution for a(2a-9)=5(3a-7)-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a(2a-9)=5(3a-7)-1 equation:



a(2a-9)=5(3a-7)-1
We move all terms to the left:
a(2a-9)-(5(3a-7)-1)=0
We multiply parentheses
2a^2-9a-(5(3a-7)-1)=0
We calculate terms in parentheses: -(5(3a-7)-1), so:
5(3a-7)-1
We multiply parentheses
15a-35-1
We add all the numbers together, and all the variables
15a-36
Back to the equation:
-(15a-36)
We get rid of parentheses
2a^2-9a-15a+36=0
We add all the numbers together, and all the variables
2a^2-24a+36=0
a = 2; b = -24; c = +36;
Δ = b2-4ac
Δ = -242-4·2·36
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{2}}{2*2}=\frac{24-12\sqrt{2}}{4} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{2}}{2*2}=\frac{24+12\sqrt{2}}{4} $

See similar equations:

| (3x+25)+(4x+15)=180 | | 6x+60=5 | | X+2x-15-35=x | | 6a+3-3=5a+9 | | 3x-2x=3x+20 | | 4x-18=33 | | 3=4.8/u | | 6c+5=4c+6 | | -x-15+4x=-17x+6x+150 | | 5(3w+10)/4=-9 | | v/7+5=10 | | 6f+3-4f=5=10f | | -2*c=6 | | (4+(-6))*c=6 | | r+86=2 | | 18/2y=1 | | F(x)=-3x3-21x2-30x | | 14r+11=11 | | (p/3)+5=15 | | z-14=-8 | | 8v+2=18 | | (2a=1)=1 | | 10(s-4)=-142 | | 2/3x=11/9 | | (3x+2x)+(4x+15)=180 | | 3=|x-3|+4 | | x×x-x=x-15 | | 70+11x-4=180 | | 3(x-4)=2x+12 | | |5-10n|=105 | | x^2(x+1)=x^2-8 | | 6000=0,04x+x |

Equations solver categories