Z=(2+5j)(3+4j)

Simple and best practice solution for Z=(2+5j)(3+4j) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Z=(2+5j)(3+4j) equation:



=(2+5Z)(3+4Z)
We move all terms to the left:
-((2+5Z)(3+4Z))=0
We add all the numbers together, and all the variables
-((5Z+2)(4Z+3))=0
We multiply parentheses ..
-((+20Z^2+15Z+8Z+6))=0
We calculate terms in parentheses: -((+20Z^2+15Z+8Z+6)), so:
(+20Z^2+15Z+8Z+6)
We get rid of parentheses
20Z^2+15Z+8Z+6
We add all the numbers together, and all the variables
20Z^2+23Z+6
Back to the equation:
-(20Z^2+23Z+6)
We get rid of parentheses
-20Z^2-23Z-6=0
a = -20; b = -23; c = -6;
Δ = b2-4ac
Δ = -232-4·(-20)·(-6)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$Z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-7}{2*-20}=\frac{16}{-40} =-2/5 $
$Z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+7}{2*-20}=\frac{30}{-40} =-3/4 $

See similar equations:

| 12=q6+14 | | 15-7b+2b;b=2 | | x-3.1=3.9 | | 7(x+2)=x-28 | | 10+4f=6f−10 | | x6=−6 | | –6=v/4−10 | | –6=v/4− 10 | | 8x-29+6x-11=180 | | 3y-5y(2y-6)=8y-2(9y-6) | | 0.5(10x+2)=1+5x | | 3y+18=6-3y | | 5-(-3x)=16 | | x+52/4=83/5 | | 2(g+-6)=-4 | | 26/4=x/7 | | 3y+18=6−3y | | 2n+7-3;n=8 | | 5.70c+0.30c-36=72 | | (-3x)−5=16 | | 5x-4=26+x | | -9w-7=10w | | –4r+8r=–16 | | 5x=407 | | 5m−8=5m+10 | | –2u+6=–3u | | 11u=18+2u | | 3d+1=1+3d | | -5-3z=45=z | | Y=4x/7-5 | | 2x+15;x=10 | | 3/4=4p |

Equations solver categories