If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Y2=10
We move all terms to the left:
Y2-(10)=0
We add all the numbers together, and all the variables
Y^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $
| w+4.9=7.56 | | u-7.57=3.66 | | x+8x+32x=106 | | y-9.3=3.34 | | X+x+9=05 | | v+3.7=5.21 | | (20x+1)^.5-1=10 | | v+2.18=8.43 | | x/5+7=-4 | | 6/25x=3/4x | | 0=80t-5*(t^2) | | 5^6n=125 | | 21x+3=22x-3 | | -2(x-4)=2(5-x)-2 | | 33.00=7g+3.95 | | 10y2+34=284 | | (1)/(2)n=(3)/(4) | | 2(2x+1)=4x+6 | | X+102+x+92=180 | | 140=80t-5*(t^2) | | 9(n-4)=-18 | | 4x-3=12/2x+2 | | 32.51=6g+3.65 | | 14+b/5=2 | | j-88=-9 | | -4=-1=x | | 0.5x+7=3x-8 | | -4=-1x | | 9x-11+73=281 | | X-10+5x-50=180 | | 21+90=x | | y=2.5+4.5 |