Y=x2-10x+22

Simple and best practice solution for Y=x2-10x+22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=x2-10x+22 equation:



=Y2-10Y+22
We move all terms to the left:
-(Y2-10Y+22)=0
We add all the numbers together, and all the variables
-(+Y^2-10Y+22)=0
We get rid of parentheses
-Y^2+10Y-22=0
We add all the numbers together, and all the variables
-1Y^2+10Y-22=0
a = -1; b = 10; c = -22;
Δ = b2-4ac
Δ = 102-4·(-1)·(-22)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{3}}{2*-1}=\frac{-10-2\sqrt{3}}{-2} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{3}}{2*-1}=\frac{-10+2\sqrt{3}}{-2} $

See similar equations:

| -2u+2=-7u=17 | | 2.5x-1.75=5(7–0.5x) | | X^2+2x=150 | | 2(3x3)+2=26 | | —4k+3=8—14 | | 82x-23=3 | | 3x+1-2x=1+1 | | x−7=8 | | (5x+2)+12=15 | | 82x-3=23 | | 3-3x=4-3 | | 2x-9=-37 | | (2x-55)=(x-11)=3x | | 158=38-7y | | 23x-3=82 | | 12/n=4/3 | | P/3+2=2p/4 | | x2-5=11 | | 3n-8=n+6 | | 2m-5=3m-14 | | 3-6x=4-3-3x | | 4y+3=21+y | | 16=u+3u | | 15=d/22 | | (q-9)*5=40 | | 10q+5=4 | | 16=u=3u | | 4c+3=39 | | -1.2x=0.24 | | 9y+3=6y=15 | | 15x+18=33 | | 11x-32=9x+12 |

Equations solver categories