If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=7Y^2-28Y+14
We move all terms to the left:
-(7Y^2-28Y+14)=0
We get rid of parentheses
-7Y^2+28Y-14=0
a = -7; b = 28; c = -14;
Δ = b2-4ac
Δ = 282-4·(-7)·(-14)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-14\sqrt{2}}{2*-7}=\frac{-28-14\sqrt{2}}{-14} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+14\sqrt{2}}{2*-7}=\frac{-28+14\sqrt{2}}{-14} $
| -4(3x-2)=-15 | | 3x²+5=17 | | x^2-x/4=0 | | 2^4x-1=64^3x | | 30÷10×6=n | | 24x-1=643x | | 3+11x=118 | | 6-8q=1 | | A(q-3)=23 | | 15x2-30x-45=0 | | 4*x+1=16 | | 4+2y+-3y=3y+-3y | | 3x+9+4x-3+5x-5=180 | | 128=64^x | | 103÷x=7 | | k(k+2)=-4 | | k(k+3.5)=-6.25 | | 4(x+5)-3(7-2x)=0 | | k(k+7)=-29 | | k(k+6)=-20 | | -7-6x=3-(2+5x) | | k(k+5)=-13 | | 11+2y/3=29 | | k(k+6)=-15 | | 2.5(x+1)=7+x | | k(k+5)=-10 | | 3(11)+2y=87 | | (x-1)2+3(x-1)=0 | | .3x-5=10 | | 1.5/x=0.5/30-1/15 | | 7a=5a* | | f(-10)=5 |