If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=4Y^2-5Y-10
We move all terms to the left:
-(4Y^2-5Y-10)=0
We get rid of parentheses
-4Y^2+5Y+10=0
a = -4; b = 5; c = +10;
Δ = b2-4ac
Δ = 52-4·(-4)·10
Δ = 185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{185}}{2*-4}=\frac{-5-\sqrt{185}}{-8} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{185}}{2*-4}=\frac{-5+\sqrt{185}}{-8} $
| 2.8=18.x | | 6/7(1/4+3/5)=3/20j | | 1y+2*1=-3 | | 11(t-6)+7t=6(3t+2)-11 | | 9x-17x=-16 | | 2b+3b=7b-10 | | X^4+12x+27=0 | | 7y-5(1-y)=1 | | (D^2-6D+45)y=0 | | 3(7+2x)=4x+9x | | F(-3)=x^2+2x-4 | | 3(7+2x)=x(4+9) | | Y=-3x/2-39/73 | | (7+2x)3=4x+9x | | Y=-28/57-3x/2 | | 108-7x/5=x | | (5)/(x+5)=0 | | 5/x+5=0 | | 1/2p+1=1/3 | | 8/l=5/8 | | 4+3t-2=9t+29-3t | | -4x+48=0 | | f/3=2/7 | | 5x+1308x=151 | | 6a(8)=48 | | 3x+2x=12-20 | | 4^3x=57 | | 3/x^2-11x+30-1/x-6-1/9x-45=0 | | (3/x^2-11x+30)-(1/x-6)-(1/9x-45)=0 | | x-3/2=-12 | | 3x2-11x+30-1x-6=19x-45 | | 2(9a+10)+2(8a+6)=304 |