If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=4Y^2+Y-1
We move all terms to the left:
-(4Y^2+Y-1)=0
We get rid of parentheses
-4Y^2-Y+1=0
We add all the numbers together, and all the variables
-4Y^2-1Y+1=0
a = -4; b = -1; c = +1;
Δ = b2-4ac
Δ = -12-4·(-4)·1
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{17}}{2*-4}=\frac{1-\sqrt{17}}{-8} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{17}}{2*-4}=\frac{1+\sqrt{17}}{-8} $
| 2/5x-2=40 | | 4(g-14)=16 | | 4=x/ | | x17=-10 | | Y=6x24 | | 1÷7x=5 | | 3,5x=4,5 | | 2(10w-2)=-2(-8w-2) | | −17+2(x+22)=49 | | 10x+-9=91 | | 10c-10=140 | | 4^x+5=36 | | 5u–10u=10 | | -2=5x+11 | | -10-5x=35 | | -7y+2=14 | | 3g-4=-1 | | –18=18+6b | | 22.1=y/5 | | -5(u+6)=-8u | | p²=36/16 | | R(p)=-6p^2+18000 | | -7+-3n=-19 | | 0.2(8x+6)=11 | | (-3x+48)°=90 | | 1+9=4x1 | | 2÷7x=10 | | 11x-22=90° | | 4y+5/8=5/8 | | 8=3r-~2 | | 2=2(w+1)-2 | | 7x+8=4x-40 |