If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=160+-16Y^2
We move all terms to the left:
-(160+-16Y^2)=0
We use the square of the difference formula
-(160-16Y^2)=0
We get rid of parentheses
16Y^2-160=0
a = 16; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·16·(-160)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*16}=\frac{0-32\sqrt{10}}{32} =-\frac{32\sqrt{10}}{32} =-\sqrt{10} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*16}=\frac{0+32\sqrt{10}}{32} =\frac{32\sqrt{10}}{32} =\sqrt{10} $
| (3w–7)(9+w)=0 | | 10x2=6+9 | | 130.6-4.1x=6.9x+21.7 | | 8+c=100 | | 2+4x=10+2x | | 136.5-7.3x=4.7x+38.1 | | 7d-(6-8d)=19 | | 3(2m-1)+5=6(m+11) | | 16=5a-7+8 | | -8=-7/4m | | 8x+2=78 | | 2h+7=1 | | 12/6=n/30 | | 8x+12+102=108 | | 14x-5=-47 | | 21x=-47 | | -5/w=16 | | 355=5x | | -(w+4)=-4w+13 | | 2/3(7-2/3x)=2/9-4/9(x+1) | | 4(x-1)=9x-10-5x | | 10r+40=220 | | 13x+46=-5x+69 | | 6b+5=1;1/2 | | 3(p+1)^2-6=754 | | 3y-9+78=180 | | 35-6m=8m-7m | | 7d-4d-5=16 | | 10-4m=9m-8m | | 3x/5-3=6 | | 28-6(2y+14)=124 | | -20=10n |