If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+72Y
We move all terms to the left:
-(-16Y^2+72Y)=0
We get rid of parentheses
16Y^2-72Y=0
a = 16; b = -72; c = 0;
Δ = b2-4ac
Δ = -722-4·16·0
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-72}{2*16}=\frac{0}{32} =0 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+72}{2*16}=\frac{144}{32} =4+1/2 $
| 1=1+5a+3a | | -8x-28=-4(5x-(8)+2x | | 4k+4=44 | | 460-2x=20+0.5x^2 | | -16x+6-8=32+4x | | 13=3x=5 | | 1.2(m+7)=66 | | 5t-1/4=1 | | 4x+37=10x | | -40/5=n | | 40^3x=5^2x+1 | | n8=-9 | | (5x-18)=(3x-4) | | 6n=(-42) | | 70/5=63/x | | 3y+2=0.5(10y+4) | | 110n=-11 | | 1/3d+7=12 | | -28k=-7 | | -77p=-11 | | x/3.5=125/2.5 | | (-9s)=54 | | 12+4a=20 | | 1/6b-9=-4 | | (-4n)=16 | | 98=n+2 | | j+25=33 | | j+75=92 | | 1/4y+13=8 | | m+12=58 | | c+35=55 | | y+5=87 |