Y=-16t2+120

Simple and best practice solution for Y=-16t2+120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=-16t2+120 equation:



=-16Y^2+120
We move all terms to the left:
-(-16Y^2+120)=0
We get rid of parentheses
16Y^2-120=0
a = 16; b = 0; c = -120;
Δ = b2-4ac
Δ = 02-4·16·(-120)
Δ = 7680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7680}=\sqrt{256*30}=\sqrt{256}*\sqrt{30}=16\sqrt{30}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{30}}{2*16}=\frac{0-16\sqrt{30}}{32} =-\frac{16\sqrt{30}}{32} =-\frac{\sqrt{30}}{2} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{30}}{2*16}=\frac{0+16\sqrt{30}}{32} =\frac{16\sqrt{30}}{32} =\frac{\sqrt{30}}{2} $

See similar equations:

| n=14n | | 3d+8=168 | | 7m+3=-11 | | 750-7x=200-3x | | 8y-16=5y+5 | | 6(n-3)-2n=11 | | 5x-2+11x+12=180 | | 15n+25=85 | | 200+3x=750+7x | | 85=15n+25 | | c-2=-4 | | -(5-3x)=25 | | 98=-10+6a | | 598.74=(3.14×7.9)r^2 | | 5(x-6)+8=-7x-6 | | 9-4x=8x-3 | | 71=7m+8 | | 12x-3°=10x+15° | | 40=7y-16 | | 8x2-12x-4=0 | | 7n-(-16)=65 | | 2(x+37)=5-25 | | 11x-20°=7x+28° | | 2(x+37)=5-5 | | 2x+15°=135° | | 3x+134°=6x+10° | | 8x+17=-8x+33 | | 3g=–10+2g | | X²+6x=18 | | 61x+61=1708 | | 49+x=53 | | 1/14=2.5/x |

Equations solver categories