If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=(4-Y)(4-Y)-14-6Y
We move all terms to the left:
-((4-Y)(4-Y)-14-6Y)=0
We add all the numbers together, and all the variables
-((-1Y+4)(-1Y+4)-14-6Y)=0
We multiply parentheses ..
-((+Y^2-4Y-4Y+16)-14-6Y)=0
We calculate terms in parentheses: -((+Y^2-4Y-4Y+16)-14-6Y), so:We get rid of parentheses
(+Y^2-4Y-4Y+16)-14-6Y
determiningTheFunctionDomain (+Y^2-4Y-4Y+16)-6Y-14
We get rid of parentheses
Y^2-4Y-4Y-6Y+16-14
We add all the numbers together, and all the variables
Y^2-14Y+2
Back to the equation:
-(Y^2-14Y+2)
-Y^2+14Y-2=0
We add all the numbers together, and all the variables
-1Y^2+14Y-2=0
a = -1; b = 14; c = -2;
Δ = b2-4ac
Δ = 142-4·(-1)·(-2)
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{47}}{2*-1}=\frac{-14-2\sqrt{47}}{-2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{47}}{2*-1}=\frac{-14+2\sqrt{47}}{-2} $
| w/3+11=13 | | 9=6x+7(-1x+3) | | x^+2x+1=4 | | 4x+6(-3x=14)=-42 | | 6x-18/3-x=0 | | 3,14y=9420 | | 9/7t+7/6=-59/42 | | -8=-12+v/6 | | -x+6+3x=6+2x | | 3x-5(1x-11)=73 | | k/6.8=5 | | 5b+11-5b=50 | | 9=x/4+12 | | 3x+2/4=2x+7/5 | | 0.85r=5.95 | | 14x+68=40 | | -8+x/5=20 | | y/2.4=2.5 | | 5(x-2)=4(3x+8) | | 8x+12+20x=180 | | -48=-4x+2(6x+12 | | x+x+2+x+1=30 | | Y=(4-y)2 | | 8x+12+20x=18” | | n/3=60 | | m-2/3=7/3 | | 2(x+1)=x+14 | | 10(x+1)=5(2x+2 | | 3/n=60 | | -u7+2=-13 | | 3^-7x=8 | | p+5/7=19/7 |