Y=(20-0.5x)(3000+125x)

Simple and best practice solution for Y=(20-0.5x)(3000+125x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=(20-0.5x)(3000+125x) equation:



=(20-0.5Y)(3000+125Y)
We move all terms to the left:
-((20-0.5Y)(3000+125Y))=0
We add all the numbers together, and all the variables
-((-0.5Y+20)(125Y+3000))=0
We multiply parentheses ..
-((+0Y^2+0Y+2500Y+60000))=0
We calculate terms in parentheses: -((+0Y^2+0Y+2500Y+60000)), so:
(+0Y^2+0Y+2500Y+60000)
We get rid of parentheses
0Y^2+0Y+2500Y+60000
We add all the numbers together, and all the variables
Y^2+2501Y+60000
Back to the equation:
-(Y^2+2501Y+60000)
We get rid of parentheses
-Y^2-2501Y-60000=0
We add all the numbers together, and all the variables
-1Y^2-2501Y-60000=0
a = -1; b = -2501; c = -60000;
Δ = b2-4ac
Δ = -25012-4·(-1)·(-60000)
Δ = 6015001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2501)-\sqrt{6015001}}{2*-1}=\frac{2501-\sqrt{6015001}}{-2} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2501)+\sqrt{6015001}}{2*-1}=\frac{2501+\sqrt{6015001}}{-2} $

See similar equations:

| x=4+2*5 | | x=4+2X5 | | 106=5v+11 | | 5x+4((−32)(x)+2)=6 | | 9=5(-9)+b | | -10+11x+6x^2=0 | | x+17/100x=21.06 | | 45=4v,94 | | 3n^2+1=271 | | 8z-4+3z=7z+z+14 | | 45=4v9v | | 6s-1=-4s+99 | | 5-2(7x+15)=18+2x+5 | | 4(21/8x+1/2)=-2(1/7-5/28x) | | 2(2)-6=x | | 300=x | | 5=4(u+2)-7u | | h/3+4-2=5 | | 11z-5z+6=-24-9z | | x=60-0.3(40-0.2x) | | 7k-(-16)=65 | | 30=-x/5+15 | | 17=-5-w | | 8p+3=35 | | x=400+0.8(350+0.7x) | | (n-6)^2=0 | | 33=3y-42 | | -5=10+5r | | 45/x=12/100 | | x/5+10=-12 | | y=350+0.7(400+0.8y) | | 0.6x+0.5=1.16666 |

Equations solver categories