If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3-3Y^2+2Y=0
a = -3; b = 2; c = +3;
Δ = b2-4ac
Δ = 22-4·(-3)·3
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{10}}{2*-3}=\frac{-2-2\sqrt{10}}{-6} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{10}}{2*-3}=\frac{-2+2\sqrt{10}}{-6} $
| 15p^2-6p=0 | | (x+4)^2-10=39 | | 10(s-7)=-123 | | 0=2.1,5+b | | 0,57x²-13=0 | | (2x-4)(x-2)=12x+8 | | {x}^{2}+14x=72 | | 3x+1/4x-1=0 | | 13+8x=7x+7 | | 16-2=34-x | | 3(2x-5)+3(4x-7)=x-8 | | x+34=57 | | −5x+12=11 | | 16n13n=9 | | 5x‒4=x+20 | | 9m+10=28 | | 120=2x+4x/12 | | 121p^2+14p+2=0 | | x^2-39x=-675 | | x2-6= | | 1/4x2-2x+4=0 | | 25(z+3))=100 | | 76+47+6x-9=180. | | 120=3x+4x/12 | | 7-x+10=38 | | 7-x+10=39 | | 2x^2-5x16=0 | | 3x+15+49+110=180 | | 4x+30+54+36=180 | | 2/p3-p+6/5p2=3/p3 | | z/3+5=11 | | 2x+12+62+32=180 |