If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2+3Y^2=4Y^2
We move all terms to the left:
2+3Y^2-(4Y^2)=0
We add all the numbers together, and all the variables
-1Y^2+2=0
a = -1; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-1)·2
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-1}=\frac{0-2\sqrt{2}}{-2} =-\frac{2\sqrt{2}}{-2} =-\frac{\sqrt{2}}{-1} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-1}=\frac{0+2\sqrt{2}}{-2} =\frac{2\sqrt{2}}{-2} =\frac{\sqrt{2}}{-1} $
| 2x+6/4=-10 | | 12c−12c+2c−2c+c=17 | | 19s-10s-7=2 | | 10c-6c-c+5c=16 | | Y=3.49x+0.69 | | 19k-10k-k-4k-3k=14 | | x-0.45x=69 | | 3(5)+15y=2(15) | | 13q-10q+3q=18 | | (2x+7)=(2x-16)+(6x+19) | | 8r-2r-6r+4r=16 | | (2x+7)+(2x-16)+(6x+19)=180 | | 0=-16t^2+160t-144 | | b–11=-8 | | 18d+d+3d+3d-22d=18 | | -4x-5=73/9 | | 5-10n=-11 | | (6x+1)+(3x+6)+(2x+8)=180 | | 7j-14j+-13j=20 | | 3/8+x=7/10 | | 5x+3x+2=4x+0 | | Y=5x(2)-9 | | b+-8b=-14 | | 89+x=109 | | 5v-5v+6v=18 | | 11x+1=25x-1 | | 2x+x=414 | | 22=4y-42 | | 7x^2+2x=2 | | 4x-8=5x-2(x+) | | -1-4x=-29 | | Y=5x(7)-9 |