Y-2/y+4=y-7/y+3+1

Simple and best practice solution for Y-2/y+4=y-7/y+3+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y-2/y+4=y-7/y+3+1 equation:



-2/Y+4=Y-7/Y+3+1
We move all terms to the left:
-2/Y+4-(Y-7/Y+3+1)=0
Domain of the equation: Y!=0
Y∈R
Domain of the equation: Y+3+1)!=0
We move all terms containing Y to the left, all other terms to the right
Y+1)!=-3
Y∈R
We add all the numbers together, and all the variables
-2/Y-(Y-7/Y+4)+4=0
We get rid of parentheses
-2/Y-Y+7/Y-4+4=0
We multiply all the terms by the denominator
-Y*Y-4*Y+4*Y-2+7=0
We add all the numbers together, and all the variables
-Y*Y+5=0
Wy multiply elements
-1Y^2+5=0
a = -1; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-1)·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-1}=\frac{0-2\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-2} =-\frac{\sqrt{5}}{-1} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-1}=\frac{0+2\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-2} =\frac{\sqrt{5}}{-1} $

See similar equations:

| 2x2=21-11x | | 8x=3=5x-21 | | 4y+3=73 | | 5y-1/2y-3=3/4 | | 22+6x=-51 | | F(x)=1”3+1 | | 23b=8b=63 | | 17.5=3k+1 | | 2494=5j-6 | | 2496=6j-6 | | 56=8u+8 | | 9e+6=42 | | 2m+6=116 | | 3x+21=8 | | 12x+84=40x | | |5x-8|=|x| | | 10x-44=-4 | | 11^(y+3)=6 | | x-4x-3x=21 | | 0.75x=0.25x+100 | | 2x+53=7x+8 | | 4×(n+3)=18 | | 8a=72* | | 4×+3y+8=0 | | 6x-14+5x+5+90=180 | | –18=k+57 | | 9=p4 | | -16=-6×+4(x-7) | | n=62n^2 | | 115/8+149/11=x | | y÷12.5=5 | | y−30=4 |

Equations solver categories