Y(2)+y(2)=288

Simple and best practice solution for Y(2)+y(2)=288 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y(2)+y(2)=288 equation:



(2)+Y(2)=288
We move all terms to the left:
(2)+Y(2)-(288)=0
We add all the numbers together, and all the variables
Y^2-286=0
a = 1; b = 0; c = -286;
Δ = b2-4ac
Δ = 02-4·1·(-286)
Δ = 1144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1144}=\sqrt{4*286}=\sqrt{4}*\sqrt{286}=2\sqrt{286}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{286}}{2*1}=\frac{0-2\sqrt{286}}{2} =-\frac{2\sqrt{286}}{2} =-\sqrt{286} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{286}}{2*1}=\frac{0+2\sqrt{286}}{2} =\frac{2\sqrt{286}}{2} =\sqrt{286} $

See similar equations:

| 6+y÷5=21 | | 2-q=21 | | 3n=2n+240 | | 28=3+v/5 | | 2+q=21 | | 20x+4=9x+2 | | 12=r(0.5) | | 4y+7=5y=3 | | 6n+5=-11 | | 5(f−68)=90 | | 6p+11-7p=8-p+3 | | 78=6(p+7) | | 〖(5-x)〗^(1/2)-2x=0 | | -v/2=-47 | | 120-81=x | | b-5.9=8.6 | | 12.5s/50=8 | | -2(x+5)=-6+4(x-2) | | 17=20−3v | | (5-x)^.5-2x=0 | | S-3=s/2+11 | | 5h-2{3/2h+4}=10 | | 2,5c+4=-21c-94,7 | | 672=16•b | | r+19=48 | | 1/2×z=12 | | -4m+(-7)(6+(-2m))=8 | | 2,5x+4=-21x-94,7 | | 6/5÷n=6 | | 3(x-8)+16=2x-4 | | 3x-19=39 | | 2n+6n-9n-3n=-32 |

Equations solver categories