If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=3(5X+13)(4X-3)
We move all terms to the left:
X-(3(5X+13)(4X-3))=0
We multiply parentheses ..
-(3(+20X^2-15X+52X-39))+X=0
We calculate terms in parentheses: -(3(+20X^2-15X+52X-39)), so:We add all the numbers together, and all the variables
3(+20X^2-15X+52X-39)
We multiply parentheses
60X^2-45X+156X-117
We add all the numbers together, and all the variables
60X^2+111X-117
Back to the equation:
-(60X^2+111X-117)
X-(60X^2+111X-117)=0
We get rid of parentheses
-60X^2+X-111X+117=0
We add all the numbers together, and all the variables
-60X^2-110X+117=0
a = -60; b = -110; c = +117;
Δ = b2-4ac
Δ = -1102-4·(-60)·117
Δ = 40180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40180}=\sqrt{196*205}=\sqrt{196}*\sqrt{205}=14\sqrt{205}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-110)-14\sqrt{205}}{2*-60}=\frac{110-14\sqrt{205}}{-120} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-110)+14\sqrt{205}}{2*-60}=\frac{110+14\sqrt{205}}{-120} $
| -6x+8x=14 | | 2u+44=-8(u+2) | | 0.5x-x=5x | | 2x+7=-6x+6 | | 2+5x=7x16 | | 19x+15=8x-2 | | 12/x=4/21 | | 6x+9=4(5x+7) | | x^2+2x-3.4=0 | | 6(-2g-1)=-(13g+) | | 5x–12=–67 | | 3-4(6x-2)=5x+9 | | 11y=6y+3y-4 | | -5(4r+4)=8(1+r) | | !5+x=24 | | 12n+17=-4(7-3n) | | 12n+17=-28+12n | | 3a+5a-2a+a=5a | | -2u+6=2 | | 8x+14=12x-2 | | x^2-2x+3.5=0 | | 7x+49=2x+93 | | -8-5n=64+3n | | (x-4)^2+3=19 | | -9x-7=-70 | | 8x+6=28x+9 | | -6x+12=488 | | 4m2−256=0 | | -40+x=36 | | -6-4x=-26 | | -5(2x-8)=10x+40 | | x(x+8)+22=13 |