If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2=22X+10
We move all terms to the left:
X2-(22X+10)=0
We add all the numbers together, and all the variables
X^2-(22X+10)=0
We get rid of parentheses
X^2-22X-10=0
a = 1; b = -22; c = -10;
Δ = b2-4ac
Δ = -222-4·1·(-10)
Δ = 524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{524}=\sqrt{4*131}=\sqrt{4}*\sqrt{131}=2\sqrt{131}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{131}}{2*1}=\frac{22-2\sqrt{131}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{131}}{2*1}=\frac{22+2\sqrt{131}}{2} $
| 7=8s=5 | | (2y-1)^=0 | | 7x^2-32x-162=0 | | -20x+48+-5x+32=180 | | 23x-16=-53 | | (z+4)^2+22-2=0 | | 6=(x+2)/(3) | | 2/6y=8 | | (z+4)^2+22=2 | | 1.8p=2.8 | | 4/5d=8 | | 9x/9=-45/9 | | -2m-20=132 | | -20x+48=-5x+32 | | 1/3c=3 | | 6n+16=2n+24 | | 2n+16=2n+24 | | F(x)=5x+1500 | | Y-1/x+1=8/2 | | 8(y+7)-3(y-5)=2(y-4) | | 2/3=3l | | 8p+1/2p=9-1/2p | | -12x-21=9-6x | | 3(b-5)-5b=-21 | | 5^2+12^2=c^2 | | 16^-3n+2=64 | | (y-7)^2=0 | | -80=-11c+-9 | | 1-3a=11 | | (5)/(13)t=-9 | | 23z=6 | | x/4=-5+x+15/3 |