X2=(1-x)(1+x)

Simple and best practice solution for X2=(1-x)(1+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X2=(1-x)(1+x) equation:



X2=(1-X)(1+X)
We move all terms to the left:
X2-((1-X)(1+X))=0
We add all the numbers together, and all the variables
X2-((-1X+1)(X+1))=0
We add all the numbers together, and all the variables
X^2-((-1X+1)(X+1))=0
We multiply parentheses ..
X^2-((-1X^2-1X+X+1))=0
We calculate terms in parentheses: -((-1X^2-1X+X+1)), so:
(-1X^2-1X+X+1)
We get rid of parentheses
-1X^2-1X+X+1
We add all the numbers together, and all the variables
-1X^2+1
Back to the equation:
-(-1X^2+1)
We get rid of parentheses
X^2+1X^2-1=0
We add all the numbers together, and all the variables
2X^2-1=0
a = 2; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*2}=\frac{0-2\sqrt{2}}{4} =-\frac{2\sqrt{2}}{4} =-\frac{\sqrt{2}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*2}=\frac{0+2\sqrt{2}}{4} =\frac{2\sqrt{2}}{4} =\frac{\sqrt{2}}{2} $

See similar equations:

| 17w=56+9w | | 10y-37=4y/7 | | -7b=135 | | c=2(3.14)(1) | | c−(-3)=15 | | c=2(3.14 | | 2x+98=243 | | 13x-9=19x-9 | | 14y-9y=35 | | 120-2x=108 | | 1/5x2-4=0 | | 4x2+3x+5=0 | | 35=8+6x | | 8x-6=2x+66 | | 35−8=6x | | 6x+4x-48=64-6x | | x/4x+7=15 | | 3x+20=-2(x-5) | | 9(w-6)=-5w+16 | | 9z+9=6z | | 4y-2=2(y+2) | | 31+m=30 | | 6(x-7)+2x=14 | | -36=4y+8(y+3) | | -10=4(v-7)+2v | | n2-37n+342=0 | | 2^3x+3=8^2x | | 3(x−7)=3x−21 | | 3c×5=9c-1 | | -12+x/5=9 | | 2+s+6=18 | | 2+5+a=18 |

Equations solver categories