If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-40X+32X-1280=0
We add all the numbers together, and all the variables
X^2-8X-1280=0
a = 1; b = -8; c = -1280;
Δ = b2-4ac
Δ = -82-4·1·(-1280)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-72}{2*1}=\frac{-64}{2} =-32 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+72}{2*1}=\frac{80}{2} =40 $
| 2m+5)/3=3m-5 | | 2(4z-3)=28 | | x(x+1)(x+2)(x+3)=15 | | 10x+1=8x+7= | | x^2=28-8 | | 2.5x-3.7=135-18x | | x^2-18(x-4)=0 | | 3y+6=2-5y | | 5(-3k-4)=-110 | | 7x-10=4x+29+5x-9 | | (1+x)*5=1.33 | | 6x-9=2x-19 | | 4x-7x+39=11-x | | 100/x=0.85/850 | | 8*y2=72 | | A+3b=93 | | 18/t+8/t=10 | | 42+y=32 | | 4y+8=2Y+3 | | 20x^2-8x=-10 | | 12+3(x+4)=36 | | X+14=6x+5 | | j+16/2=2 | | 5-2a+4=11 | | (6^3-2x)(5^x+4)=72 | | n/9=11/6 | | 4(^x^+2)=100 | | 4(^x^+2)=10 | | -90=-5(2x+4) | | 5^x^-3=125 | | 4x+3=3(x-3)+5x-4 | | Z=-y+3 |