If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-24X+12=0
We add all the numbers together, and all the variables
X^2-24X+12=0
a = 1; b = -24; c = +12;
Δ = b2-4ac
Δ = -242-4·1·12
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{33}}{2*1}=\frac{24-4\sqrt{33}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{33}}{2*1}=\frac{24+4\sqrt{33}}{2} $
| -168+6r=18r-39(r+12) | | –19−16+5w=20−6w | | f2–24f=0 | | -2(2g+1)+3(g-5)=16 | | 2(x^2+12x-80)=0 | | 1/3(6–15x)=−2+4x | | -6=(p-3)+4(p+6) | | 2(x^2+12x-80=0 | | 44m2+45m=0 | | 5(d-3)+10=20 | | S=53+16n | | Y=4x;(0,9) | | 36+8x=4(5x+6) | | 8h+4=–6h−10 | | 31x+3+192=360 | | 7x–10=3x+150 | | 2(x^2+3-20)=0 | | 31x+3+192=180 | | -5t+1=11 | | 52x=-4x^2+360 | | x(^2+3-20)=0 | | 30x+25=-20x+1000 | | 13+1/4a=(-3) | | 2x+24+104=180° | | F(x)=1/2(8x-20) | | 3/4(8x–4)=−3 | | ¾(8x–4)=−3 | | 5/8=1/x | | 6x-21-75=105 | | 2(x+8)=16-x | | 4/2=10/x=12/6 | | 32-3n=2n+18 |