If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-14X+49=81
We move all terms to the left:
X2-14X+49-(81)=0
We add all the numbers together, and all the variables
X^2-14X-32=0
a = 1; b = -14; c = -32;
Δ = b2-4ac
Δ = -142-4·1·(-32)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-18}{2*1}=\frac{-4}{2} =-2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+18}{2*1}=\frac{32}{2} =16 $
| 4(6=x)=48 | | 2y/9=2y-7 | | 4.7=|x|-2.8 | | -5r+-3=51 | | 3g+5g-7=8g-7 | | 6k+7k=-19 | | 2/4y-5=-3 | | 6(4=x)=48 | | 15+x/14=55 | | -12=x/10=12 | | 13c-10=-10+13c | | x/4+15=8 | | 1/11y+2=-15 | | -c-7=8-c | | x/7-12=5 | | 2x+2=189.5 | | 5x(2x+1)=25-3x | | -9+j=j-9 | | 3f+3=8 | | -30=-4-(-9v-10) | | 2y-9=11y+36 | | 4z^2+1=0 | | -t+5=-t-3 | | x-7+x+35=180 | | -8p+5=45 | | 4y-4=12y+60 | | 3x^2-7=199 | | 1+9v=9v+1 | | 3x^2+7=-199 | | –8x–7=17 | | -5p-10=-5 | | 3x2^=96 |