If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X=23
We move all terms to the left:
X2+X-(23)=0
We add all the numbers together, and all the variables
X^2+X-23=0
a = 1; b = 1; c = -23;
Δ = b2-4ac
Δ = 12-4·1·(-23)
Δ = 93
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{93}}{2*1}=\frac{-1-\sqrt{93}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{93}}{2*1}=\frac{-1+\sqrt{93}}{2} $
| 128+90+90+x=180 | | 5x+7=12x+2 | | (-2)x=-32 | | 8y=0.5(5y+55) | | 2(-1-1)=2x-2 | | 0.5(3x+42)=27 | | 6x-12-2x=18 | | 180=3x+7+x | | 1)w2+7w=–10 | | 2(1-1)=2x-2 | | 25/20=4x-23/2x+2 | | (x-5)^2=40 | | 8x+4=14x-6 | | 11+3n=23 | | 180=(3x=7)x | | -0.25+0.25x=x+0.25 | | x+5x=62 | | 1/4(8x+16)=4 | | 3p+1=2p+8 | | 5^(x+2)=3^(3x) | | 63÷b=9 | | 2=4x+26 | | 20-16x-4x=40 | | 6+n/5=−4 | | f(10)=2000*2^10 | | 4j-4=-10+5j | | (3i)(2i)^2=0 | | 6+n5=−4 | | 5x3=7x–1 | | 8(10−6q)=+3(−7q−2) | | 8+1.50x=15.50 | | x×15=155 |