If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=41X=5
We move all terms to the left:
X2+X2-(41X)=0
We add all the numbers together, and all the variables
2X^2-41X=0
a = 2; b = -41; c = 0;
Δ = b2-4ac
Δ = -412-4·2·0
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-41}{2*2}=\frac{0}{4} =0 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+41}{2*2}=\frac{82}{4} =20+1/2 $
| 5x+48+3x=2x+20+4,x= | | 3(x—6)=3x—18 | | 109=-5(r-8)-(r+3) | | -2(2m-7=54 | | 188x=354 | | 9x-4x=265-20,x= | | (3x+30)=360 | | 2(n+6)-n=n+12 | | 5=n/4+7 | | 3c+4c=-14 | | 6x+9x-88=44-8x | | 5x+3x=100+4,x= | | 15x-88=44-8x | | A=3.14*(x+2)(x+2) | | 133x+126=61x | | (x+6)/6)=1-(x+6)/5) | | n/7+3=4 | | 1+6x+4=47 | | x3+1=4 | | 6x-(13-x)+4x=62 | | 4c+12=44 | | C(80)=0.014x-0.47 | | 19r=266 | | -4+8(2r+2)=-(r-3) | | 5(x+1)-4x=13 | | -2x+5=-6x-11,x= | | -12+5n=-18 | | -4(v-8)=8 | | 133x+79=43x | | 3+5x-1=7x-10 | | 3x+10-2x=4(x-5) | | 3x/2=18x/12 |