If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=24
We move all terms to the left:
X2+X2-(24)=0
We add all the numbers together, and all the variables
2X^2-24=0
a = 2; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·2·(-24)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*2}=\frac{0-8\sqrt{3}}{4} =-\frac{8\sqrt{3}}{4} =-2\sqrt{3} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*2}=\frac{0+8\sqrt{3}}{4} =\frac{8\sqrt{3}}{4} =2\sqrt{3} $
| 8(5x–3)=6(-3x–4)3 | | x-5+3x+5=180 | | 7(-6x+8)+46x=-(-3x+-7) | | 4^(x-1)-3(2^x)+8=0 | | -4+5=-8x+21 | | 6{4-2p)=9p | | -14+2=-10x+2 | | 0.75(16−s)+0.5s=9 | | 8=1/3x+2 | | 55=25+5/11a | | 12-9x=2x-12+x | | 2/5a+3=23 | | -5/12a+14=49 | | -8x+9x-12+2x=-3 | | 3e+6=-15+3e | | 1/2y+1=2 | | 2x-5-x+18-4-7x+1=13 | | 6e-6=e-2 | | 6e6=e-2 | | 3t+24=32 | | Y+30°+y+10°=180 | | −5y +4= 1414 | | 7^1-3x=7^10 | | 60-2.5x=50-2x(20) | | 3x^2+28x-56=0 | | 9=3(5c-7) | | x2+3x+11=0 | | x+x/3+30=42 | | w+–56=9 | | b/4=3.8 | | 2x+x/4+18=72 | | h+3.9=9.9 |