X2+y2=120

Simple and best practice solution for X2+y2=120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X2+y2=120 equation:



X2+X2=120
We move all terms to the left:
X2+X2-(120)=0
We add all the numbers together, and all the variables
2X^2-120=0
a = 2; b = 0; c = -120;
Δ = b2-4ac
Δ = 02-4·2·(-120)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{15}}{2*2}=\frac{0-8\sqrt{15}}{4} =-\frac{8\sqrt{15}}{4} =-2\sqrt{15} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{15}}{2*2}=\frac{0+8\sqrt{15}}{4} =\frac{8\sqrt{15}}{4} =2\sqrt{15} $

See similar equations:

| -3=3(x=10) | | (27/(x-5))+(2x/(x+4))=6/(2x-1) | | 44*c=50c | | (2x^2)+2x=12 | | 6–2(p+5)=0 | | -48=6(x=3) | | 9a=10a+18 | | X/y=120 | | 35=5(x-9) | | 30=5(x=5) | | m^2+3m=180 | | (x-3)(x-4)=x×x-12 | | 5p=10p= | | 2z*7-7=-8 | | 9z-8=8 | | (20•(x-5))/50•1=6 | | 2x+1/2x-1=3/5 | | x+12/5=4 | | 1/3-4/x=1/x | | 3(x-3)=x+6 | | x+1/4-5=x-1/5 | | -16t^2×96t+112=0 | | 13495=s*2699 | | 4x-13=6x-25 | | 5(x-2)-2(3x+1)=0 | | 2x+3/3-x-1/4=5 | | 282=a-10 | | (8-2)*(4+3)*(5-1)=x | | 4*(9-5)+16/4=x | | 8-y/5=1 | | 1573=c/4 | | 2(-3x+4)=5x+2 |

Equations solver categories