If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2+6X+2=0
We add all the numbers together, and all the variables
2X^2+6X+2=0
a = 2; b = 6; c = +2;
Δ = b2-4ac
Δ = 62-4·2·2
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{5}}{2*2}=\frac{-6-2\sqrt{5}}{4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{5}}{2*2}=\frac{-6+2\sqrt{5}}{4} $
| 8x+(4x-4)*2=-8 | | 7x-(3+2x)-x=0 | | x*2+x=15 | | 12p-4=10p | | –6y–4=16 | | 10x-10+6x+2=180 | | 9x/3-6=6 | | y/7+4=6 | | 4(2y-3)=(y+6) | | 5x-2(x-3)=-2+5-8 | | x/2+3=14 | | 6(2-x)-4(5-3x)=50 | | t-6=9 | | 4(x+2)-14=10 | | I5x+4I=11 | | x+x/3=48 | | 2m+5+3m=30 | | (2x+2)^2-64=0 | | 8c-9c+16=11 | | 5x+5=40x-4x | | 2(5x+3)-+6(x-4)=48 | | 8g-10g=24 | | (2x+2)^2=64 | | 7c+1=2c-7 | | 5.4g+3=3.4g+11 | | 7(3x-6)=12(2+2x) | | 63+(x+21)=3x | | 65=n-39 | | 7(3x-6)=1292+2x) | | 7(3x-6)=1292+2x | | 41-x=82 | | 4x+6=10x-14 |