If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X=62
We move all terms to the left:
X2+X-(62)=0
We add all the numbers together, and all the variables
X^2+X-62=0
a = 1; b = 1; c = -62;
Δ = b2-4ac
Δ = 12-4·1·(-62)
Δ = 249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{249}}{2*1}=\frac{-1-\sqrt{249}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{249}}{2*1}=\frac{-1+\sqrt{249}}{2} $
| z/7+9=-15 | | (4x+70)=(3x+90) | | (4x+70)=(3x+90( | | -10x+6=-7 | | -15=c | | (2x+1)+(3x+9)=6x-3 | | 125t2-200t=0 | | 0=125t2-200t | | 3x-^5=9 | | 6m-2(2+2m)=3m | | H=120t-16t2 | | (3/4)x+2/3=x-7/3 | | (3m+4)÷5=5 | | v^+4v+3=0 | | T=5n-6 | | 10x+32=2x | | 6f-6=12 | | 4x^2-5=x^2+70 | | 5(x+2)^2-17=63 | | −3k−(−8)+2=−3k−(−8)+2 | | 18x-5x+2=(x-3)-3 | | 6x+7+9x-2=180 | | 4x-(-4-x)=5x | | 10x=25=50 | | 5x+4+72=180 | | 4x2+12=7x2 | | 5x+4+72=18- | | 2x+4=3x–1 | | 4x+3(3x+11)=-6 | | 4x+7=7x-38 | | 34-5x=6 | | 5x+9=7x-5=6x-3 |