If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X=30
We move all terms to the left:
X2+X-(30)=0
We add all the numbers together, and all the variables
X^2+X-30=0
a = 1; b = 1; c = -30;
Δ = b2-4ac
Δ = 12-4·1·(-30)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*1}=\frac{-12}{2} =-6 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*1}=\frac{10}{2} =5 $
| 3{4-(-2x-1)}=54x+39 | | (x^2-5)^2+4=0 | | -7x+3=x=11 | | 26+2=25x+5 | | 3(3.14159)+w=2(3.14159) | | -c+3=-8 | | .5(3x+6)=1.6(x+2) | | 3y^2-10y-2=-12y | | -1+4n/3=11 | | (2x+1°)+(x-10°)=90° | | 5.75x=12 | | 2((s+3(s-1))=18 | | (t-5/8)-(t-2/2)=1/3 | | -15/(4x+1)=x-4 | | -15=-2g= | | 4n+16+5n+20=180 | | −4+7=(1−3m) | | F(x)=3x^2+16x-12 | | 2(8s+1)-4s=3(4s+3)-13 | | 53/4x=12 | | 4x^2+98=0 | | -6(v+4)+3v+7=6v+12 | | 2x-8x-13=-6x+3-13 | | x-4/9x^2=0 | | 2x+1+2(x-1)=16x-4/4 | | -5(2x+3)=-55 | | (1+x)^5=2 | | (5m-6)^2=7 | | (7x-2x^2)=0 | | 7=5r | | 3(6m+4)=-6(5+3m) | | -2(3x-3)+3x-7=11 |