If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X=12
We move all terms to the left:
X2+X-(12)=0
We add all the numbers together, and all the variables
X^2+X-12=0
a = 1; b = 1; c = -12;
Δ = b2-4ac
Δ = 12-4·1·(-12)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*1}=\frac{-8}{2} =-4 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*1}=\frac{6}{2} =3 $
| J(x)=200x | | 1/6x+8=18 | | n+6.7=20 | | H(x)=6x+44 | | -13.6=-2.4+v/7 | | 38=x/5-50 | | -82=x/2-75 | | 5(x-12)=100 | | G(x)=30(2)^x+8 | | 3.2n=4.8 | | -4.1=v/6+15.1 | | 1/4x+1/2=X+1/2 | | F(x)=2(14)^x+1 | | 6-(3-2x)=11 | | 5^x-13=5^3x+5 | | 8x+2-3x=222 | | F(x)=2(14)^4+1 | | 8x-2=4x-102 | | -24=-6-6f | | 11y-9y=2 | | 15+6r=435 | | 36/16=9/16v | | x/12-1/6=24 | | n/16=32 | | 15^-2x=12 | | 3-m/5=8 | | 12=a/7-2 | | 4x3=8 | | 40+5x=740 | | 4x3=3 | | 17y+12=47 | | 0=-x^2+15x+250 |