If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+4=29.X^2-4
We move all terms to the left:
X2+4-(29.X^2-4)=0
We add all the numbers together, and all the variables
X^2-(29.X^2-4)+4=0
We get rid of parentheses
X^2-29.X^2+4+4=0
We add all the numbers together, and all the variables
-28X^2+8=0
a = -28; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-28)·8
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*-28}=\frac{0-8\sqrt{14}}{-56} =-\frac{8\sqrt{14}}{-56} =-\frac{\sqrt{14}}{-7} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*-28}=\frac{0+8\sqrt{14}}{-56} =\frac{8\sqrt{14}}{-56} =\frac{\sqrt{14}}{-7} $
| I6x-6I=-10 | | X^2+4=29,x^2-4= | | t-36=-47 | | 2a+a=1 | | 2x+18=-x+6 | | 4x-8=42-x | | 6x^-2+x^-1=2 | | 9(x-4)+9=9x=5 | | -m^2-6m-14=0 | | 2x+1x=-3 | | 6=1.0653^x | | 14=b*4/2 | | 37(x+6)=67/8 | | 20/(x+13)=16/9 | | 6x+3=-2x+4 | | 2t+5/3=3t-10 | | 2t+5=3t-10 | | 6(2p+3)=132 | | (5+u)(4u+2)=0 | | 4(u-9)=-76 | | (15-x)/x=1/2 | | 24=6(y+2) | | 40/(8t-40)=0 | | ((40)/(8t-40))=0 | | *((40)/(8t-40))=0 | | (((t^2)-25)/5t)*((40)/(8t-40))=0 | | 1/5a=31 | | ((t^2)-25)/5t=0 | | (1/5)6x+1=1 | | 4(u-9)=-76. | | (x/2)+(3x/6)=1 | | (x-2)(x-3)=8x+8 |