If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+33X+90=0
We add all the numbers together, and all the variables
X^2+33X+90=0
a = 1; b = 33; c = +90;
Δ = b2-4ac
Δ = 332-4·1·90
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-27}{2*1}=\frac{-60}{2} =-30 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+27}{2*1}=\frac{-6}{2} =-3 $
| 6(x-2=-18 | | -4.8e+8.6=143 | | 2x+x=32 | | 5^(x+1)-5^(x-1)=120 | | 5x+3=3x+23= | | -6.9a+3.4=206.26 | | 8z-4=86+2z | | X/8^2x-1=1/2 | | 95-x/12=-75 | | 7x/11+10=5 | | (17/3a)-10=2/3a | | (5^x+1)-(5^x-1)=120 | | 15x+28=3x-8 | | 0.2(10−5c)=5c−1 | | 3.4x-9.48=8.2 | | 20x=1/3 | | 3(x+2)–1=3x+1 | | 21-2(x-4)=-3(x+3) | | 20k+100=10k=120 | | 6r-7=11 | | -n+4=37.7 | | j-18=12 | | (a-123)5=1355 | | 2.6k+7.95-14.7k=-14.6k-8.8 | | 3x/4=x-6/2 | | |2k-7|=13 | | 4x^2+36x=320 | | -8c-16=-10c | | 8-9y=8y+40 | | 10•x-20=3 | | 5x-22=2x-1 | | 4(x+5)-1=39 |