If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+28X+53=0
We add all the numbers together, and all the variables
X^2+28X+53=0
a = 1; b = 28; c = +53;
Δ = b2-4ac
Δ = 282-4·1·53
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{143}}{2*1}=\frac{-28-2\sqrt{143}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{143}}{2*1}=\frac{-28+2\sqrt{143}}{2} $
| -40+12x=118+x | | e/2=1 | | 21x-42x-9x-12=28x-189-63 | | n=12=4 | | 4(k-73)=88 | | 2(3x-5)+7(8x-12)=9 | | X=1.8f+32 | | 21x-42x-9x-12=28x+189-63 | | 5x2+2x+5=0 | | 15p=3p+24 | | 2x-3=5(5x+4)+1 | | X/5-x/10=6 | | z/9+5=1 | | (x-20)15=375 | | q-83/7=2 | | (2y)/3=4y-7 | | -108-6x=102+4x | | x^2+1.7=0 | | 10+90+6x+2x=180 | | x-(-160=44 | | 18=n+8 | | d/2+10=12 | | h+12/9=5 | | 6x-32=8x+38 | | 8x-4=-2x-4 | | 2x(-9+9)=x-(1+9) | | x-(2x-(3x-4)/7)=4x-27-9 | | 17-4d=9 | | -18=z=18 | | 1=k/3-3 | | 3s-6=s | | 2x(-9-9)=x-(1-9) |