If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+16X=346
We move all terms to the left:
X2+16X-(346)=0
We add all the numbers together, and all the variables
X^2+16X-346=0
a = 1; b = 16; c = -346;
Δ = b2-4ac
Δ = 162-4·1·(-346)
Δ = 1640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1640}=\sqrt{4*410}=\sqrt{4}*\sqrt{410}=2\sqrt{410}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{410}}{2*1}=\frac{-16-2\sqrt{410}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{410}}{2*1}=\frac{-16+2\sqrt{410}}{2} $
| 5x+4+76=180 | | 19=9+2(x+7) | | (7-v)(3v+5)=0 | | -3t-8=19 | | (x-6)+64=90 | | 0=4h+2h^2+12h | | 5x-3=6=14x | | (6j−5)(j−9)=0 | | 24+36+k=100 | | 6x+40=9x+20 | | (2x+34)+(3x+1)=180 | | (6x+1)+35=90 | | 9+c/2=-7 | | 4+9c=472 | | 8y-2=4y-2 | | (6x+3)+3x+6=90 | | 5x-5(6x+21)=120 | | -7y+3(y+2)=-18 | | 5x+6=6x-35 | | u/3.14=79 | | 10x+2=3x+23 | | RT=2x+10 | | (2x+1)+(x+8)=180 | | −7=9+c/2 | | (6x-1)(4x+6)=(6x-1)(4x+6) | | 0.4x-1.2x=3.2 | | 8b-8=72 | | 8x-3+90=90+3x-4 | | QT=3x+8 | | 3x+1+23=90 | | 35+n/7=24 | | 4+2x=2* |