If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+14X-1=0
We add all the numbers together, and all the variables
X^2+14X-1=0
a = 1; b = 14; c = -1;
Δ = b2-4ac
Δ = 142-4·1·(-1)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10\sqrt{2}}{2*1}=\frac{-14-10\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10\sqrt{2}}{2*1}=\frac{-14+10\sqrt{2}}{2} $
| -8x-6+x8=-31+3x-7 | | -8-6+x8=-31+3x-7 | | 5c+9=29 | | (x−9)(2x+3)=0 | | x+x=42=180 | | x=104.1 | | (4x)³=1728 | | h/5+8=9 | | x+10+50=180 | | x=45x+1 | | 5v=240 | | k-508=-299 | | 7.3x-9.8-8.34x=2.8 | | d-861=74 | | d-291=85 | | d-291=75 | | -(5y+2)-(4y-7)=2 | | 413=n-371 | | y/13=22 | | 16t=912 | | b+95=955 | | -992=-31p | | d-880=983 | | 9-1x=2 | | 4w-10=8w-3 | | s-95=223 | | g+-714=-915 | | -341=u+571 | | -341=u+561 | | 2u=786 | | r+534=594 | | z/10=18 |