If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+14X+36=0
We add all the numbers together, and all the variables
X^2+14X+36=0
a = 1; b = 14; c = +36;
Δ = b2-4ac
Δ = 142-4·1·36
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{13}}{2*1}=\frac{-14-2\sqrt{13}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{13}}{2*1}=\frac{-14+2\sqrt{13}}{2} $
| H=-16x2+24 | | 3x+(-8)=-8x-2 | | 13w=70 | | X=5.55y= | | -9x-114=-6 | | X=5.55,y | | G(x)=4x-16 | | q-58/9=3 | | -4(39x-5)=7(-12+4x) | | f/4-4=6 | | -11x-47=-47-11x | | 3+6x+3=18 | | 5t-49=51 | | x=+7.5+21.5 | | 5+(2y)=3 | | 14x+49=36+33x | | 3|6x+3=18 | | 9h-6/5=h+6 | | x=7.5=21.5 | | u/8+25=27 | | Y=4x^2-5x-51 | | 3t-20=34 | | c/5+29=36 | | 5/6x-1/6=1/2x+15/6. | | Sn=180°×(n-2) | | 13r+2r+11=56 | | 9v-16=11 | | 5/8=88/x | | 2)3(4x+3)+4=31 | | 3s/2=9 | | 5x^2+14x-115=0 | | 10x-5x-3+7=2+3 |