If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+136X=16
We move all terms to the left:
X2+136X-(16)=0
We add all the numbers together, and all the variables
X^2+136X-16=0
a = 1; b = 136; c = -16;
Δ = b2-4ac
Δ = 1362-4·1·(-16)
Δ = 18560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18560}=\sqrt{64*290}=\sqrt{64}*\sqrt{290}=8\sqrt{290}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(136)-8\sqrt{290}}{2*1}=\frac{-136-8\sqrt{290}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(136)+8\sqrt{290}}{2*1}=\frac{-136+8\sqrt{290}}{2} $
| 45=5t² | | 5t²=45 | | x2+4x×34=16 | | 4t/2+7=27 | | x^2+4x×34=16 | | 261=87x | | 7x-5=8x-10 | | 2x+27=8x+9 | | X²+3x-88=0 | | x8(x−7)=−16 | | 10x-14=6x+10 | | 4i/5+4=24 | | 4c/9+(c+5)/6=4 | | 6x-34=3x-4 | | 2g/5+4=14 | | 3p/4=15 | | -8t^2=-7t | | -9q^2-72q=0 | | 7u-4=24 | | 5(2l+9=65 | | x+6.2=9.4 | | q/4-4=1 | | 0=(x-7)(x-3) | | 4(x+3)-6=10 | | 4a/5+7=27 | | 2400=60x | | 3u/5+6=24 | | x-4=13x-114 | | 2m/3-7=3 | | 2x/3+3/2=4x/6-1/6 | | 18-7g=5g+21 | | 8x-12=-16 |