If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+12X-133=0
We add all the numbers together, and all the variables
X^2+12X-133=0
a = 1; b = 12; c = -133;
Δ = b2-4ac
Δ = 122-4·1·(-133)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-26}{2*1}=\frac{-38}{2} =-19 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+26}{2*1}=\frac{14}{2} =7 $
| 2q+15=21 | | 9m+2=3m-11 | | t+1=8.5 | | y=-1/2+5/4 | | z+6/10=-2 | | -4(d+6)=-20 | | y=2(1/2)-1/4 | | 4x1-×=7 | | (7x+1)x(7+1)=(3x+4)x(3x+4) | | (4+w)w=21 | | X2+4(3x)=133 | | 217=5-x | | 1/6x+1/8x=1 | | 48+(6x+28)+2x=180 | | x/15=7/80 | | x2-7x-10=0 | | 5(2x+1)+3(4x+2)=33 | | 4z^2+3z+3=4 | | -(14+3y)-y=14 | | 5(2x+1)+3(4-+2)=33 | | 3x2+4x-5=12x2+8x-3x+18 | | -15-5=(-2/5)x | | 7a^2-a^2=7a^2-a^2 | | X2+x=121 | | (7x+1)x(7x1)=(3x+4)x(3x+4) | | 15=3(x+4) | | -0.3x²+4x+200=0 | | 4x+40=46 | | a+0.375=-4 | | 66x=88 | | 6q=3q+1 | | U-4x-9=15 |