If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+12+20X=0
We add all the numbers together, and all the variables
X^2+20X+12=0
a = 1; b = 20; c = +12;
Δ = b2-4ac
Δ = 202-4·1·12
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{22}}{2*1}=\frac{-20-4\sqrt{22}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{22}}{2*1}=\frac{-20+4\sqrt{22}}{2} $
| 2(y-6)-10=-8 | | X-6x=97 | | 3(x+10)=10(x+3) | | 8(2n+4)=8(5n+2)+5 | | c/7+35=43 | | 4-2x=6(-3x-6) | | -2(2x-9)=-4x-18 | | -58=6y+-22 | | 10m+10m-2m+5=13 | | -121-2x=179-12x | | -3+3x=51 | | 5w+12=87 | | 10c^2=0. | | 2+5x=4x+3 | | 19=9+2n | | b+2/3+(2b-90)+90+(b+45)=180 | | 5/3x+2=23 | | Y=3/8x+1.5 | | -2y-2y+8+8=12 | | 5k-4k+4=19 | | -64=14-10j | | 5/4=-19/8+3g/5 | | -24=-6+2/3x | | 1/2x+1/2x=×+1 | | 18=9/5x | | 16z+-9z+4z=-11 | | 5/4=-19/8+3g/ | | 4(7n-7)=-4(-4-6n) | | 259+39d=350+33d | | h-2+9=11 | | 10=m+17 | | (3)=49x+5 |