If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+100X-2020=0
We add all the numbers together, and all the variables
X^2+100X-2020=0
a = 1; b = 100; c = -2020;
Δ = b2-4ac
Δ = 1002-4·1·(-2020)
Δ = 18080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18080}=\sqrt{16*1130}=\sqrt{16}*\sqrt{1130}=4\sqrt{1130}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-4\sqrt{1130}}{2*1}=\frac{-100-4\sqrt{1130}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+4\sqrt{1130}}{2*1}=\frac{-100+4\sqrt{1130}}{2} $
| 2(2x)=3x+7 | | -10(a+5)=-80 | | 2(3x-7)+4(3x+2)=(5x+9)+3 | | 2(5u+3)-4(7u-1)=-88 | | 2n*3=5 | | 3x-7x+x-1=x-13 | | -7+k=-4 | | 3x-2/4=1 | | (2x-4)/4=3/5 | | 18h=20 | | w2+4w=4 | | 3x-x+17=17 | | 4x-5=5x-13 | | 100=4t-20 | | 3x-11=-3 | | y=56(7/8)-4(1/4) | | 5a+8=7 | | -5/2=m/2 | | -2(2x-8)+1=17-4x | | 2n-8=81 | | X=-x-10(-1.7 | | 9y+5y=24 | | 5x+8=3x−4 | | 5x+8=3x−4. | | 8-2y=15-3y | | 47.23=9g+3.58 | | 180=2a+45 | | 0.5x+2.4+0.6x+3.1=2x-0.8x+4.3 | | -9+p/7=-2 | | 14.5=2.5g+2 | | 3x/5-4=15 | | 3500=1200-100x |