X2+(x+7)2=172

Simple and best practice solution for X2+(x+7)2=172 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X2+(x+7)2=172 equation:



X2+(X+7)2=172
We move all terms to the left:
X2+(X+7)2-(172)=0
We add all the numbers together, and all the variables
X^2+(X+7)2-172=0
We multiply parentheses
X^2+2X+14-172=0
We add all the numbers together, and all the variables
X^2+2X-158=0
a = 1; b = 2; c = -158;
Δ = b2-4ac
Δ = 22-4·1·(-158)
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{159}}{2*1}=\frac{-2-2\sqrt{159}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{159}}{2*1}=\frac{-2+2\sqrt{159}}{2} $

See similar equations:

| -3=-4+q/7 | | -2(11-12x)=-4(1-6-) | | 12=-8x+2(x-3) | | -2+4x=6x-4 | | Y=x2+4 | | -4/3x=-4/9 | | 3(t-6)=24 | | 2(4t+1)=5(3-t) | | Y=4x2-12 | | 0.4x+4.2=1.3+1.3x | | 5(4+4x)=20 | | f(5)=-5^2+2(5)-1 | | 8(x+3)=4x | | 1/7x+9=21 | | 2=5+m/6 | | 4a+6=a+9 | | 4-12z=-7–14z | | r+4/4=4 | | 64v2-2=2 | | 3+2.2x=0 | | 1-3(-2x+5)=2(x-3) | | 5x+6=-79 | | x-3=12. | | 2p-4=4(p-2) | | 1+7x+6x=105 | | 5(35+x)=200 | | 1+7x+6x=27 | | (v-3)=(v^2+8v) | | 12x+144=x+4 | | 3x-17=x-8 | | 4-12z=-7-14z | | 9(2x+10)=450 |

Equations solver categories