X/5x+7/2=3/2x-14

Simple and best practice solution for X/5x+7/2=3/2x-14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X/5x+7/2=3/2x-14 equation:



X/5X+7/2=3/2X-14
We move all terms to the left:
X/5X+7/2-(3/2X-14)=0
Domain of the equation: 5X!=0
X!=0/5
X!=0
X∈R
Domain of the equation: 2X-14)!=0
X∈R
We get rid of parentheses
X/5X-3/2X+14+7/2=0
We calculate fractions
8X^2/40X^2+(-15X)/40X^2+35X/40X^2+14=0
We multiply all the terms by the denominator
8X^2+(-15X)+35X+14*40X^2=0
We add all the numbers together, and all the variables
8X^2+35X+(-15X)+14*40X^2=0
Wy multiply elements
8X^2+560X^2+35X+(-15X)=0
We get rid of parentheses
8X^2+560X^2+35X-15X=0
We add all the numbers together, and all the variables
568X^2+20X=0
a = 568; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·568·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*568}=\frac{-40}{1136} =-5/142 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*568}=\frac{0}{1136} =0 $

See similar equations:

| 2x+6=3x+2-x | | 2x+6=3(x+3)-x | | x=(6/5)*10 | | 6/5=10/x | | 2x+2=14+x | | 42a+16=4a+8 | | 7^4x=11 | | 20y+4=18y+6 | | 15+6p=-9 | | 12+6=8x-2 | | 8u+16=4(u-4) | | x2–10x=0 | | 5x-6=13-3x | | 6x2+60=0 | | 2x–10=22 | | 2x–5=7x+10 | | 4y=5=25 | | 3x=2x=18 | | 2x+1/3x=5/6 | | 5^-6y=12 | | 7m+3=6+5m | | 9.0.25(4y-3)=0.05(10y-9) | | 3x/2=60 | | (4x-5)+117+(4x-3)+3x-3)+118+(3x+6)=720 | | 6(x-3000)=x+3000 | | 117+(4x-5)=118+(3x+6) | | 118+(4x-5)+(4x-3)=180 | | 117+(3x-3)+(3x+6)=180 | | (3x-3)+(3x+6)=180 | | 117+(4x-5)=180 | | 118+(3x+6)=180 | | 3x^2-4.6x-0.3=0 |

Equations solver categories