If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X/5XXX-1/5X-1=6/155
We move all terms to the left:
X/5XXX-1/5X-1-(6/155)=0
Domain of the equation: 5XXX!=0
X!=0/1
X!=0
X∈R
Domain of the equation: 5X!=0We add all the numbers together, and all the variables
X!=0/5
X!=0
X∈R
X/5XXX-1/5X-1-(+6/155)=0
We get rid of parentheses
X/5XXX-1/5X-1-6/155=0
We calculate fractions
(-750X^2)/3875X^2+775X^2/3875X^2+(-775X)/3875X^2-1=0
We multiply all the terms by the denominator
(-750X^2)+775X^2+(-775X)-1*3875X^2=0
We add all the numbers together, and all the variables
775X^2+(-750X^2)+(-775X)-1*3875X^2=0
Wy multiply elements
775X^2+(-750X^2)-3875X^2+(-775X)=0
We get rid of parentheses
775X^2-750X^2-3875X^2-775X=0
We add all the numbers together, and all the variables
-3850X^2-775X=0
a = -3850; b = -775; c = 0;
Δ = b2-4ac
Δ = -7752-4·(-3850)·0
Δ = 600625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{600625}=775$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-775)-775}{2*-3850}=\frac{0}{-7700} =0 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-775)+775}{2*-3850}=\frac{1550}{-7700} =-31/154 $
| 0.5x+9=39 | | 20j+5j-j-2j-4j=-18 | | -7=-10+p/3 | | -u+10u+2=-16 | | 3(2x+4)=4x-20 | | 12u-13u+20u-10=9 | | 7x+6x+5+4x+5=180 | | 10v=100,000 | | -14m+5m+1=10 | | 4(x-6)=8-6x-4 | | -4=1+x/2 | | -19k-2k+18k-4k=14 | | 3(1+2t)=3t+5 | | 1=6(1–p) | | 3x-2+6x-5=65 | | 14q+8q-13q=18 | | u/7.68+3=9 | | p=p-5 | | -25.8=y/7-3.4 | | 5.1=30.7-4w | | 7(2x+4)=2(7x-6) | | w/8+6=-4.24 | | a+4a-2a+3a-a=15 | | -19d+20d+19d-8d=-12 | | -2.4=x/3+5.1 | | 0.08x=35 | | -4/n=-9 | | 8.1=-11.1+6u | | 2x-4(x-2)=-6+3x-1 | | 1/4(x-28)=7+2x | | 34+5x=6x+17 | | 3d-2d=7 |