If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X-9+X(6+X)=10+4-(X+7)
We move all terms to the left:
X-9+X(6+X)-(10+4-(X+7))=0
We add all the numbers together, and all the variables
X+X(X+6)-(10+4-(X+7))-9=0
We multiply parentheses
X^2+X+6X-(10+4-(X+7))-9=0
We calculate terms in parentheses: -(10+4-(X+7)), so:We add all the numbers together, and all the variables
10+4-(X+7)
determiningTheFunctionDomain -(X+7)+10+4
We add all the numbers together, and all the variables
-(X+7)+14
We get rid of parentheses
-X-7+14
We add all the numbers together, and all the variables
-1X+7
Back to the equation:
-(-1X+7)
X^2+7X-(-1X+7)-9=0
We get rid of parentheses
X^2+7X+1X-7-9=0
We add all the numbers together, and all the variables
X^2+8X-16=0
a = 1; b = 8; c = -16;
Δ = b2-4ac
Δ = 82-4·1·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{2}}{2*1}=\frac{-8-8\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{2}}{2*1}=\frac{-8+8\sqrt{2}}{2} $
| 2x+2.50=20 | | -2s=-s+9 | | -2-12=-5x-3 | | 11u=28+4u | | (1/2)x+(1/3)(x-6)=(5/6)x+2 | | G(x)=4x2-3x+7 | | -1=-32-4²+t | | 3=3+60t-16t^2 | | 7=p+25/5 | | 50=5+4/3x | | 9x-5(x-2)=4x+2x-8 | | -3x+2+x=5 | | 3x+5=4x+25 | | 2x+7=49–4x | | 4-6h=1-5h | | 7y-49-5=24y-48-9y | | 3x+22=12x+30 | | 3u-12=9(u+4) | | X+1/9+x+2/2=2 | | f/−3+4=5 | | -7m=-10-8m | | 3(7-2k)=30 | | 0.25x=x-7.5 | | -5=2+7x | | 8q-8=20 | | -3(u+6)=3u+24 | | 2x(12.8)+6=-17 | | 2(m+1)=-16 | | 2/5=4/m+8 | | 2x-2=2x-18 | | 7(x−8)+5=−51 | | 7-3a+12=2a |